当前位置:首页 > 教案教学设计 > 数学教案

集合的基本运算教学设计一等奖

日期:2021-05-12

这是集合的基本运算教学设计一等奖,是优秀的数学教案文章,供老师家长们参考学习。

集合的基本运算教学设计一等奖

集合的基本运算教学设计一等奖第1篇

  教学分析

  课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.

  三维目标

  1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.

  2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.

  重点难点

  教学重点:交集与并集、全集与补集的概念.

  教学难点:理解交集与并集的概念,以及符号之间的区别与联系.

  课时安排

  2课时

  教学过程

  第1课时

  导入新课

  思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.

  思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?

  (1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};

  (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.

  引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.

  思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?

  图1

  ②观察集合A,B与集合C={1,2,3,4}之间的关系.

  学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.

  (2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.

  ②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.

  推进新课

  新知探究

  提出问题

  (1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?

  (2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.

  (3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.

  (4)试用Venn图表示A∪B=C.

  (5)请给出集合的并集定义.

  (6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

  请同学们考察下面的问题,集合A,B与集合C之间有什么关系?

  ①A={2,4,6,8,10},B={3,5,8,12},C={8};

  ②A={x|x是国兴中学2012年9月入学的高一年级女同学},B={x|x是国兴中学2012年9月入学的高一年级男同学},C={x|x是国兴中学2012年9月入学的高一年级同学}.

  (7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.

  活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.

  讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.

  (2)所有属于集合A或属于集合B的元素组成了集合C.

  (3)C={x|x∈A,或x∈B}.

  (4)如图1所示.

  (5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.

  (6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.

  (7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.

  其含义用符号表示为:

  A∩B={x|x∈A,且x∈B}.

  用Venn图表示,如图2所示.

  图2

  应用示例

  例1 集合A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?

  活动:学生先思考集合中元素的特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.

  解:因为A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B={x|00},A∩B∩C= .

  图3

  点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,直接观察或借助于数轴或Venn图写出结果.

  变式训练

  1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.

  解:对任意m∈A,则有m=2n=2•2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.

  而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.

  2.求满足{1,2}∪B={1,2,3}的集合B的个数.

  解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.

  3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.

  解:∵A∩B={9},则9∈A,a-1=9或a2=9.

  ∴a=10或a=±3.

  当a=10时,a-5=5 ,1-a=-9;

  当a=3时,a-1=2不合题意;

  当a=-3时,a-1=-4不合题意.

  故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.

  4.设集合A={x|2x+1<3},B={x|-3

  A.{x|-3

  C.{x|x>-3} D.{x|x<1}

  解析:集合A={x|2x+1<3}={x|x<1},

  观察或由数轴得A∩B={x|-3

  答案:A

  例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.

  活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B⊆A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.

  解:由题意得A={-4,0}.

  ∵A∩B=B,∴B⊆A.

  ∴B= 或B≠ .

  当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,

  则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.

  当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,

  此时,B={x|x2=0}={0}⊆A,即a=-1符合题意.

  若集合B含有两个元素,则这两个元素是-4,0,

  即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.

  则有-4+0=-2(a+1),-4×0=a2-1.

  解得a=1,则a=1符合题意.

  综上所得,a=1或a≤-1.

  变式训练

  1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆(A∩B)成立的所有a值的集合是什么?

  解:由题意知A⊆(A∩B),即A⊆B,A非空,利用数轴得 解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.

  2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A∪B=A,试求实数m的取值范围.

  分析:由A∪B=A得B⊆A,则有B= 或B≠ ,因此对集合B分类讨论.

  解:∵A∪B=A,∴B⊆A.

  又∵A={x|-2≤x≤5}≠ ,∴B= ,或B≠ .

  当B= 时,有m+1>2m-1,∴m<2.

  当B≠ 时,观察图4:

  图4

  由数轴可得 解得2≤m≤3.

  综上所述,实数m的取值范围是m<2或2≤m≤3,即m≤3.

  点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.

  知能训练

  课本本节练习1,2,3.

  【补充练习】

  1.设集合A={3,5,6,8},B={4,5,7,8},

  (1)求A∩B,A∪B.

  (2)用适当的符号(⊇,⊆)填空:

  A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.

  解:(1)因A,B的公共元素为5,8,故两集合的公共部分为5,8,

  则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.

  又A,B两集合的所有相异元素为3,4,5,6,7,8,故A∪B={3,4,5,6,7,8}.

  (2)由Venn图可知

  A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.

  2.设A={x|x<5},B={x|x≥0},求A∩B.

  解:因x<5及x≥0的公共部分为0≤x<5,

  故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.

  3.设A={x|x是锐角三角形},B={x|x是直角三角形},求A∩B.

  解:因三角形按角分类时,锐角三角形和直角三角形彼此孤立,故A,B两集合没有公共部分.

  所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}= .

  4.设A={x|x>-2},B={x|x≥3},求A∪B.

  解:在数轴上将A,B分别表示出来,得A∪B={x|x>-2}.

  5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.

  解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.

  6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.

  分析:M,N中的元素是数,A,B中的元素是平面内的点集,关键是找其元素.

  解:∵M={1},N={1,2},∴A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.

  7.若A,B,C为三个集合,A∪B=B∩C,则一定有(

  )

  A.A⊆C B.C⊆A C.A≠C D.A=

  解析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,

  ∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.

  思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B,D,

  令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,

  而此时A=C,排除C.

  答案:A

  拓展提升

  观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;

  (2)当A= 时,A∩B,A∪B这两个运算结果与集合A,B的关系;

  (3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.

  由(1)(2)(3)你发现了什么结论?

  图5

  活动:依据集合的交集和并集的含义写出运算结果,并观察与集 合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用Venn图表示,如图5所示,就可以发现A∩B,A∪B与集合A,B的关系.

  解:A∩B=A⇔A⊆B⇔A∪B=B.

  用类似方法,可以得到集合的运算性质,归纳如下:

  A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪ =A,A⊆B⇔A∪B=B;

  A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩ = ;A⊆B⇔A∩B=A.

  课堂小结

  本节主要学习了:

  1.集合的交集和并集.

  2.通常借助于数轴或Venn图来求交集和并集.

  作业

  1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

  2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.

  3.书面作业:课本习题1.1,A组,6,7,8.

  设计感想

  由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.

  第2课时

  导入新课

  问题:①分别在整数范围和实数范围内解方程(x-3)(x-3)=0,其结果会相同吗?

  ②若集合A={x|0

  学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范 围”问题就是本节学习的内容,引出课题.

  推进新课

  新知探究

  提出问题

  ①用列举法表示下列集合:

  A={x∈Z|(x-2) =0};

  B={x∈Q|(x-2) =0};

  C={x∈R|(x-2) =0}.

  ②问题①中三个集合相等吗?为什么?

  ③由此看,解方程时要注意什么?

  ④问题①中,集合Z,Q,R分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.

  ⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A的所有元素组成的集合B.

  ⑥请给出补集的定义.

  ⑦用Venn图表示∁UA.

  活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.

  讨论结果:①A={2},B=2,-13,C=2,-13,2.

  ②不相等,因为三个集合中的元素不相同.

  ③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.

  ④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.

  ⑤B={2,3}.

  ⑥对于一个集合A,全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集.

  集合A相对于全集U的补集记为∁UA,即∁UA={x|x∈U,且x A}.

  ⑦如图6所示,阴影表示补集.

  图6

  应用示例

  思路1

  例1 设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁UA,∁UB.

  活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出∁UA,∁UB.

  解:根据题意,可知U={1,2,3,4,5,6,7,8},

  所以∁UA={4,5,6,7,8},∁UB={1,2,7,8}.

  点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.

  常见结论:∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).

  变式训练

  1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁UA)∩(∁UB)等于(

  )

  A.{1,6}

  

   B.{4,5}

  C.{2,3,4,5,7} D.{1,2,3,6,7}

  解析:思路一:观察得(∁UA)∩(∁UB)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(∁UA)∩(∁UB)=∁U(A∪B)={1,6}.

  答案:A

  2.设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(∁UB)等于(

  )

  A.{1,2,3,4,5} B.{1,4}

  C.{1,2,4} D.{3,5}

  答案:B

  3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩(∁UQ)等于(

  )

  A.{1,2} B.{3,4,5}

  C.{1,2,6,7} D.{1,2,3,4,5}

  答案:A

  例2 设全集U={x|x是三角形},A={x |x是锐角三角形},B={x|x是钝角三角形}.求A∩B,∁U(A∪B).

  活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A, B中公共元素组成的集合,∁U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.

  解:根据三角形的分类可知A∩B= ,

  A∪B={x|x是锐角三角形或钝角三角形},

  ∁U(A∪B)={x|x是直角三角形}.

  变式训练

  1.已知集合A={x|3≤x<8},求∁RA.

  解:∁RA={x|x<3,或x≥8}.

  2.设S={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},求B∩C,∁AB,∁SA.

  解:B∩C={x|x是正方形},∁AB={x|x是邻边不相等的.平行四边形},∁SA={x|x是梯形}.

  3.已知全集I=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足(∁IA) ∩B={2},(∁IB)∩A={4},求实数a,b的值.

  解:a=87,b=-127.

  4.设全集U=R,A={x|x≤2+3},B={3,4,5,6},则(∁UA)∩B等于(

  )

  A.{4}

   B.{4,5,6}

   C.{2,3,4}

   D.{1,2,3,4}

  解析:∵U=R,A={x|x≤2+3},∴∁UA={x|x>2+3}.而4,5,6都大于2+3,∴(∁UA)∩B={4,5,6}.

  答案:B

  思路2

  例1 已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:

  (1)∁UA,∁UB;

  (2)(∁UA)∪(∁UB),∁U(A∩B),由此你发现了什么结论?

  (3)(∁UA)∩(∁UB),∁U(A∪B),由此你发现了什么结论?

  活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.

  解:在数轴上表示集合A,B,如图7所示,

  图7

  (1)由图得∁UA={x|x<-2,或x>4},∁UB={x|x<-3,或x>3}.

  (2)由图得(∁UA)∪(∁UB)={x|x<-2,或x>4}∪{x|x<-3,或x>3}={x|x<-2,或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},

  ∴∁U(A∩B)=∁U{x|-2≤x≤3}={x|x<-2,或x>3}.

  ∴得出结论∁U(A∩B)=(∁UA)∪(∁U B).

  (3)由图得(∁UA)∩(∁UB)={x|x<-2,或x>4}∩{x|x<-3,或x>3}={x|x<-3,或x>4};∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴∁U(A∪B)=∁U{x|-3≤x≤4}={x|x<-3,或x>4}.∴得出结论∁U(A∪B)=(∁UA)∩(∁UB).

  变式训练

  1.已知集合 U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁UA)∪(∁UB)等于(

  )

  A.{1,6}

  

   B.{4,5}

  C.{1,2,3,4,5,7} D.{1,2,3,6,7}

  答案:D

  2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(∁IB)等于(

  )

  A.{1}

    B.{1,2} C.{2}

    D.{0,1,2}

  答案:D

  例2 设全集U={x|x≤20,x∈N,x是质数} ,A∩(∁UB)={3,5},(∁UA)∩B={7,19},(∁UA)∩(∁UB)={2,17},求集合A,B.

  活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A,B的关键是确定它们的元素,由于全集是U,则集合A,B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来 解决.

  解:U={2,3,5,7,11,13,17,19},

  由题意借助于Venn图,如图8所示,

  图8

  ∴A={3,5,11,13},B={7,11,13,19}.

  点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表示出来,这正体现了数形结合思想的优越性.

  变式训练

  1.设I为全集,M,N,P都是它的子集,则图9中阴影部分表示的集合是(

  )

  图9

  A.M∩[(∁IN)∩P]

  B.M∩(N∪P)

  C.[(∁IM)∩(∁IN)]∩P

  D.M∩N∪(N∩P)

  解析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B,D.

  思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内,即在(∁IN)∩P内,所以阴影部分表示的集合是M∩[(∁IN)∩P].

  答案:A

  2.设U={1,2,3,4,5,6,7,8,9},(∁UA)∩B={3,7},(∁UB)∩A={2,8},(∁UA)∩(∁UB)={1,5,6},则集合A=________,B=________.

  解析:借助Venn图,如图10,把相关运算的结果表示出来,自然地就得出集合A,B了.

  图10

  答案:{2,4,8,9} {3,4,7,9}

  知能训练

  课本本节练习4.

  【补充练习】

  1.设全集U=R,A={x|2x+1>0},试用文字语言表述∁UA的意义.

  解:A={x|2x+1>0},即不等式2x+1>0的解集,∁UA中元素均不能使2x+1>0成立,即∁UA中元素应当满足2x+1≤0.∴∁UA即不等式2x+1≤0的解集.

  2.如图11所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是________.

  图11

  解析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(∁US)∩(M∩P).

  答案:(∁US)∩(M∩P)

  3.设集合A,B都是U={1,2,3,4}的子集,已知(∁UA)∩(∁UB)={2},(∁UA)∩B={1},则A等于(

  )

  A.{1,2}

   B.{2,3}

   C.{3,4}

   D.{1,4}

  解析:如图12所示.

  图12

  由于(∁UA)∩(∁UB)={2},(∁UA)∩B={1},则有∁UA={1,2}.∴A={3,4}.

  答案:C

  4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S∪T)等于(

  )

  A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}

  解析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则∁U(S∪T)={2,4,7,8}.

  答案:B

  5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(∁IB)等于(

  )

  A.{1} B.{1,3} C.{3} D.{1,2,3}

  解析:∵∁IB={1,3},∴A∪(∁IB)={1}∪{1,3}={1,3}.

  答案:B

  拓展提升

  问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有 34人,解对乙题者有28人,两题均解对者有20人,问:

  (1)至少解对其中一题者有多少人?

  (2)两题均未解对者有多少人?

  分析:先利用集合表示解对甲、乙两道数学题的各种类型,然后根据题意写出它们的运算,问题便得到解决.

  解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},

  A∪B∪C={至少解对一题的学生},∁U(A∪B∪C)={两题均未解对的学生}.

  由已知,A∪C有34个人,C有20个人,

  从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),∁U(A∪B∪C)有N2=50-42=8(人).

  ∴至少解对其中一题者有42个人,两题均未解对者有8个人.

  课堂小结

  本节课学习了:

  ①全集和补集的概念和求法.

  ②常借助于数轴或Venn图进行集合的补集运算.

  作业

  课本习题1.1A组 9,10,B组 4

  设计感想

  本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节对此也予以体现,可以利用课余时间学习有关解不等式的知识.

  备课资料

  【备选例题】

  【例1】已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.

  解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},

  又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.

  故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.

  【例2】设S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则(

  )

  A.S∪T=S

   B.S∪T=T  C.S∩T=S

   D.S∩T=

  解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0,或x<0且y<0},则T⊆S,所以S∪T=S.

  答案:A

  【例3】某城镇有1 000户居民,其中有819户有彩电,有682户有空调,有535户彩电和空调都有,则彩电和空调至少有一种的有________户.

  解析:设这1 000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如图13所示.有彩电无空调的有819-535=284(户);有空调无彩电的有682-535=147(户),因此二者至少有一种的有284+147+535=966(户).填966.

  图13

  答案:966

  【知识拓展】

  差集与补集

  有两个集合A,B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C就叫做A与B的差集,记作A-B(或AB).

  例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.

  也可以用Venn图表示,如图14所示(阴影部分表示差集).

  图14

  图15

  特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I -B,叫做B在I中的补集,记作B.

  例如,I={1,2,3,4,5},B={1,2,3},B=I-B={4,5}.

  也可以用Venn图表示,如图15所示(阴影部分表示补集).

  从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.

集合的基本运算教学设计一等奖第2篇

  教学分析

  课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.

  三维目标

  1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.

  2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.

  重点难点

  教学重点:交集与并集、全集与补集的概念.

  教学难点:理解交集与并集的概念,以及符号之间的区别与联系.

  课时安排

  2课时

  教学过程

  第1课时

  导入新课

  思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.

  思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?

  (1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};

  (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.

  引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.

  思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?

  图1

  ②观察集合A,B与集合C={1,2,3,4}之间的关系.

  学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.

  (2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.

  ②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.

  推进新课

  新知探究

  提出问题

  (1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?

  (2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.

  (3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.

  (4)试用Venn图表示A∪B=C.

  (5)请给出集合的并集定义.

  (6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

  请同学们考察下面的问题,集合A,B与集合C之间有什么关系?

  ①A={2,4,6,8,10},B={3,5,8,12},C={8};

  ②A={x|x是国兴中学2012年9月入学的高一年级女同学},B={x|x是国兴中学2012年9月入学的高一年级男同学},C={x|x是国兴中学2012年9月入学的高一年级同学}.

  (7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.

  活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.

  讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.

  (2)所有属于集合A或属于集合B的元素组成了集合C.

  (3)C={x|x∈A,或x∈B}.

  (4)如图1所示.

  (5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.

  (6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.

  (7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.

  其含义用符号表示为:

  A∩B={x|x∈A,且x∈B}.

  用Venn图表示,如图2所示.

  图2

  应用示例

  例1 集合A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?

  活动:学生先思考集合中元素的特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.

  解:因为A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B={x|00},A∩B∩C= .

  图3

  点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,直接观察或借助于数轴或Venn图写出结果.

  变式训练

  1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.

  解:对任意m∈A,则有m=2n=2•2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.

  而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.

  2.求满足{1,2}∪B={1,2,3}的集合B的个数.

  解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.

  3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.

  解:∵A∩B={9},则9∈A,a-1=9或a2=9.

  ∴a=10或a=±3.

  当a=10时,a-5=5 ,1-a=-9;

  当a=3时,a-1=2不合题意;

  当a=-3时,a-1=-4不合题意.

  故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.

  4.设集合A={x|2x+1<3},B={x|-3

  A.{x|-3

  C.{x|x>-3} D.{x|x<1}

  解析:集合A={x|2x+1<3}={x|x<1},

  观察或由数轴得A∩B={x|-3

  答案:A

  例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.

  活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B⊆A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.

  解:由题意得A={-4,0}.

  ∵A∩B=B,∴B⊆A.

  ∴B= 或B≠ .

  当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,

  则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.

  当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,

  此时,B={x|x2=0}={0}⊆A,即a=-1符合题意.

  若集合B含有两个元素,则这两个元素是-4,0,

  即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.

  则有-4+0=-2(a+1),-4×0=a2-1.

  解得a=1,则a=1符合题意.

  综上所得,a=1或a≤-1.

  变式训练

  1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆(A∩B)成立的所有a值的集合是什么?

  解:由题意知A⊆(A∩B),即A⊆B,A非空,利用数轴得 解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.

  2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A∪B=A,试求实数m的取值范围.

  分析:由A∪B=A得B⊆A,则有B= 或B≠ ,因此对集合B分类讨论.

  解:∵A∪B=A,∴B⊆A.

  又∵A={x|-2≤x≤5}≠ ,∴B= ,或B≠ .

  当B= 时,有m+1>2m-1,∴m<2.

  当B≠ 时,观察图4:

  图4

  由数轴可得 解得2≤m≤3.

  综上所述,实数m的取值范围是m<2或2≤m≤3,即m≤3.

  点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.

  知能训练

  课本本节练习1,2,3.

  【补充练习】

  1.设集合A={3,5,6,8},B={4,5,7,8},

  (1)求A∩B,A∪B.

  (2)用适当的符号(⊇,⊆)填空:

  A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.

  解:(1)因A,B的公共元素为5,8,故两集合的公共部分为5,8,

  则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.

  又A,B两集合的所有相异元素为3,4,5,6,7,8,故A∪B={3,4,5,6,7,8}.

  (2)由Venn图可知

  A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.

  2.设A={x|x<5},B={x|x≥0},求A∩B.

  解:因x<5及x≥0的公共部分为0≤x<5,

  故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.

  3.设A={x|x是锐角三角形},B={x|x是直角三角形},求A∩B.

  解:因三角形按角分类时,锐角三角形和直角三角形彼此孤立,故A,B两集合没有公共部分.

  所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}= .

  4.设A={x|x>-2},B={x|x≥3},求A∪B.

  解:在数轴上将A,B分别表示出来,得A∪B={x|x>-2}.

  5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.

  解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.

  6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.

  分析:M,N中的元素是数,A,B中的元素是平面内的点集,关键是找其元素.

  解:∵M={1},N={1,2},∴A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.

  7.若A,B,C为三个集合,A∪B=B∩C,则一定有(

  )

  A.A⊆C B.C⊆A C.A≠C D.A=

  解析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,

  ∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.

  思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B,D,

  令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,

集合的基本运算教学设计一等奖第3篇

一、教学目标

(一)知识目标:理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集。感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力。

(二)能力目标:通过对并集、交集定义的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程。

(三)情感目标:积极引导学生主动参与学习的过程,培养自主探究与合作交流的意识。

二、重、难点

教学重点:交集与并集,全集与补集的概念.

教学难点:理解交集与并集的概念,以及符号之间的区别与联系

三、教学环境:利用多媒体,课件与传统黑板板书结合

四、教学过程

(一)创设情景,引入新课

问题1:我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?

(二)探究新知

观察集合A,B,C元素间的关系:

(1)A={1,3,5}B={2,4,6}C={1,2,3,4,5,6}

(2)A={x|x是有理数}B={x|x是无理数}C={x|x是实数}

你能说出集合C与集合A、B之间的关系吗?

【设计意图】这样提问目标比较明确,学生很容易找到重点,理解并集的概念,并总结并集的定义.

(三)并集的定义

一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作:A∪B读作:A并B即:A∪B={x|x∈A,或x∈B}

思考:怎样理解并集概念中的“或”字?对于A∪B,能否认为是由A的所有元素和B的所有元素所组成的集合?

【设计意图】加深对并集的理解

(四)例题讲解

例1:A={4,5,6,8},B={3,5,7,8},求A∪B

注:求两个集合的并集时,它们的公共元素在并集中只能出现一次

例2:设集合A={x|-1

【设计意图】通过两个例题巩固和消化并集的概念.

(五)探究新知

问题3:观察集合A,B,C元素间的关系:

A={4,5,6,8},B={3,5,7,8},C={5,8}

【师生互动】教师提问,引导学生讨论找出它们之间的关系

【设计意图】这样提问目标比较明确,学生很容易找到重点,理解交集的概念,并总结交集的定义.

(六)交集的定义

一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作:A∩B读作:A交B即:A∩B={x|x∈A,且x∈B}

思考:能否认为A与B没有公共元素时,A与B就没有交集?

答:不能.当A与B无公共元素时,A与B的交集仍存在,此时A∩B=?.

【设计意图】加深对交集的理解

(七)例题讲解

例3设A={x|-31.5},求:A∩B,A∪B.

练习:设A={x|0

【师生互动】一讲一练,学生容易消化并集与交集的概念.

【设计意图】巩固掌握并集与交集的概念

(八)全集与补集的定义

(1)全集的定义:一般如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.

(2)补集的定义:对于一个集合A,由全集U中不属于A的所有元素组成的集合称作集

A相对于全集U的补集,记作?UA

(3)集合表示:?UA={x|x∈U,且x?A}.

(4)Venn图表示:

(九)例题讲解

例4:已知全集U,集合A={1,3,5,7},?UA={2,4,6},?UB={1,4,6},求集合B.

点评:根据补集定义,借助Venn图,可直观地求出补集,此类问题,当集合中元素个数较少时,可借助Venn图;当集合中元素无限多时,可借助数轴,利用数轴分析法求解.

练习:已知全集U=R,A={x|x<2},则?UA等于____________

【师生互动】一讲一练,学生容易消化全集与补集的概念.

【设计意图】巩固掌握全集与补集的概念

(十)课堂总结

(1)补集与全集是两个密不可分的概念,同一个集合在不同的全集中补集是不同的,不同的集合在同一个全集中的补集也不同.另外全集是一个相对概念

(2)符号?UA存在的前提是A?U,这也是解有关补集问题的一个隐含条件,充分利用题目中的隐含条件是我们解题的一个突破口.

(十一)作业

課本13-14页6,7,9,10

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号